X-Ray Structure Determination of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ and LCAO-MO Study of Multiple Bonding in Sulfones

By Truman Jordan, H. Warren Smith, L. L. Lohr, Jr., and William N. Lipscomb Received November 3, 1962

Abstract

The crystal and molecular structure of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ has been solved, and the bonding in isoelectronic $\mathrm{F}_{2} \mathrm{NSO}_{2} \mathrm{NF}_{2}$ has been investigated in the LCAO-MO one-electron approximation in order to provide a model for understanding the barrier to internal rotation observed in α-sulfonyl carbanions. The barrier is shown to arise from interactions involving tle d-orbitals of S with the p-orbitals of bonded atoms.

Introduction. - Retention of configuration of $\alpha-$ sulfonyl carbanions, the subject of several recent investigations, ${ }^{1-5}$ implies the existence of a barrier to internal rotation which has not heretofore been explained. The retention is illustrated by the much faster rate of deuterium-hydrogen exchange as compared with the rate of racemization of an optically active carbanion. ${ }^{1-5}$ Our results for the geometry of $\left(\mathrm{CH}_{3}\right)_{2}$ $\mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ and valence structure of $\mathrm{F}_{2} \mathrm{NSO}_{2} \mathrm{NF}_{2}$, similar in the region of interest in stereochemistry and bonding to α-sulfonyl carbanions, suggest that a reasonable explanation of this retention of configuration lies primarily in the competition of neighboring orbitals for the d-orbitals of S, and not in other possible sources such as modified sp^{3} hybridization about the $\mathrm{C} \alpha^{-}$bond to S in the carbanions.

The particular orientation about the $\mathrm{C} \alpha^{-}$bond which does not allow a plane of symmetry is the case II geometry, ${ }^{6}$ and this geometry is shown to occur in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$. We find that the bond angles about N suggest an intermediate hybridization between sp^{3} and sp^{2}. For example, the $\mathrm{S}-\mathrm{N}-\mathrm{CH}_{3}$ bond angle is 119°, as reported in our preliminary communication, ${ }^{7}$ different from the analogous $\mathrm{S}-\mathrm{N} \ldots \mathrm{O}$ hydrogen bond angle of 111° about $\mathrm{N}^{\text {i }}$ in sulfamide ${ }^{8}$ in which H may not be on the $N \ldots$. O line. Intermediate hybridization is suggested ${ }^{9}$ by the comparable amounts of exchange in cyclopropyl phenyl and isopropyl phenyl sulfones. Finally, the comparable rates of $\mathrm{D}-\mathrm{H}$ exchange in plenyl 2-octyl sulfone and phenyl 1,2,2-trimethylpropyl sulfone have led to the conclusion ${ }^{10}$ that the ion is planar, or very nearly so, and that the results can only be explained in terns of an anion having case II geometry and a barrier to internal rotation about the $\mathrm{C} \alpha^{--S}$ bond.

X-Ray Diffraction Study of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$, - A single crystal of cross section approximately $(4 \mu)^{-1}$, where μ is the linear absorption coefficient, was used to record the $h K l$ levels for $0 \leqslant K \leqslant 5$ on the Weissenberg goniometer ($\mathrm{CuK} \alpha$ radiation), and the Hkl levels for $0 \leqslant H \leqslant 3$ and $h k L$ levels for $0 \leqslant L \leqslant 1$ on the precession goniometer (MoK α radiation). Reciprocal lattice symmetry of $\mathrm{D}_{2 h}$, and extinctions of $h k l$ when $h+k$ is odd, $h(l l$ when l is odd and $h k()$ when h is odd led to either Cinca or C2ca as probable space groups. Unit cell dimensions of $a=11.7(6, b=5.68$ and $c=22.03 \AA$.

[^0]give an X-ray density of $1.3 \overline{7} \mathrm{~g} . \mathrm{cm} .^{-3}$, if 8 molecules are placed in the unit cell, in agreement with the observed density of $1.34 \mathrm{~g} . \mathrm{cm} .^{-3}$.

A completely satisfactory structure, including location of H atonis, was obtained on the assumption that the space group is Cmca. Clearly, however, we cannot rule out small distortions into the lower symmetry of C2ca; but in view of the agreement obtained below, these distortions must be very slight, if they occur at all, and we therefore believe that the space group Cmca is indeed correct. The initial attack on the structure was the solution of the fully resolved b-axis projection. The $h 0 l$ data required for this projection were present only for $l=4 n$, with three very faint exceptions, and hence only one molecule occurred in this pseudo-unit cell when projected along b. Examination of the space group led to the placement of S on a mirror plane, chosen at $x=0$ and $z=1 / 8$, with a molecular twofold axis along b. Slight deviations from this precise $\mathrm{C}_{2 \mathrm{v}}$ symmetry are permitted, and do occur, in the three-dimensional structure for which only nolecular symmetry $\mathrm{C}_{\text {s }}$ is required in the space group Cmea if compatibility with this projection is required.

In the next stage, three-dimensional data from the films listed above were estimated visually with the use of a standard scale, corrected to $F^{2}{ }_{h k l}$, correlated and scaled statistically. Three-dimensional Patterson functions were computed using both normal and derivative sharpening. ${ }^{11}$ These functions quickly confirmed the x - and z-coördinates obtained from the projection, and also established the y-coordinates of all atoms except H. A minor difficulty produced either by oversharpening these functions or by the lack of satisfactory convergence because of the short b-axis was that the N N and C . . . C vectors related by the mirror plane were not located in the negative region around the origin of Patterson space. Elsewhere, however, no difficulties were encountered, and the coördinates thus found did refine satisfactorily.

Three-diniensional least squares refinement starting with isotropic temperature factor constants of $B=$ $3 \AA .^{2}$ reduced $R\left(F^{2}\right)=\Sigma F_{0}{ }^{2}-F_{c}{ }^{2} \mid / \Sigma F_{0}{ }^{2}$ from 0.62 to 0.47. Introduction of anisotropic thermal parameters reduced $R\left(F^{2}\right)$ to 0,28 , and a one-parameter correction for secondary extinction of the eight largest reflections reduced $R\left(F^{2}\right)$ further to 0.21 . The H atoms, omitted from the above refinements, were located from a difference synthesis in which all atoms except H were subtracted (Fig. 1). A summary of all peaks ligher than 0.4 e $\AA .^{-3}$ indicates incomplete subtraction of the heavier atoms, and also shows the general level of reliability of the difference map in which the highest unexplained peak is just below the level of the least prominent H atom. Introduction of these H atoms with fixed coördinates and a B-value of $4.3 \AA .^{2}$ reduced $R\left(F^{2}\right)$ to 0.17, and yielded the conventional $R=$ $\Sigma\left|F_{0}\right|-\left|F_{c}\right||\Sigma \Sigma| F_{0} \mid$ value of 0.085.

[^1]

Fig. 1.-The $x=8 / 30$ and $x=13 / 30$ sections of the difference fourier. Contours start at $0.3 \mathrm{e} / \AA^{3}{ }^{3}$ and are drawn at increinents $0.1 \mathrm{e} / \AA \mathrm{A}^{3}$ thereafter.

The molecular structure is shown in Fig, 2, and the projection of the crystal structure is given in Fig. 3. Bond distances and angles are in Table II, position and thermal parameters are in Table III, values of the disagreement factor R are in Table IV, and a very compact list of the 627 observed $F_{h k l}$ is given in Table V. Since the normals to the CNC plane and the NSN planes are $89.4 \pm 0.3^{\circ}$ apart, the molecule belongs to the case II category. ${ }^{6}$ The close proximity of $3.5 \AA$. of an O atom of one molecule to the two methyl groups on the molecule related to it by a twofold screw axis along y (Fig. 3) appears to provide a basis for explaining the 1.8° difference between the $\mathrm{S}_{1} \mathrm{~N}_{4} \mathrm{C}_{6}$ and $\mathrm{S}_{1} \mathrm{~N}_{4} \mathrm{C}_{3}$ angles. We therefore believe that the small but significant deviations of the molecular symmetry from $\mathrm{C}_{2 \mathrm{v}}$ are associated with molecular packing in the crystal, and hence we discuss the molecular parameters as averaged over $\mathrm{C}_{2 \mathrm{v}}$ symmetry.

Table I
All Peaks with a Height Greater than $0.4 \mathrm{e} / \AA^{3}{ }^{3}$ Which Appeared in the Difference Fourier

Peak height in $e / \AA .{ }^{2}$	x					
2.9	0.000	0.017	0.125	Explanation		
1.0	.000	-.133	.071	$\mathrm{~S}_{1}$		
0.9	.000	-.070	.183	O_{3}		
.8	.115	.173	.124	O_{2}		
.7	.000	-.167	.121	$0.95 \AA_{4} \mathrm{~A}_{4}$ from S		
.7	.148	.297	.069	C_{5}		
.7	.130	.167	.042	H		
.7	.147	.293	.182	C_{6}		
.6	.128	.220	.211	H		
.6	.217	.333	.067	H		
.5	.117	.443	.067	H		
.5	.217	.317	.181	H		
.5	.130	.440	.187	H		
.4	.000	-.467	.198	-		
.4	.000	-.300	.183	-		

Besides the molecular orbital study of the next section, there are clear indications from bond angles and distances that d-orbital participation is important in the bonding. For example, the average SNC angle is 119°, substantially greater than tetrahedral, and the CNC angle is 112.9°, slightly greater than tetrahedral. Also, the N atom is only (0. $27 \AA$. away from the plane of the three atoms bonded to it, in a direction which increases the N...N separation, whereas a distance of $0.51 \AA$. would be expected if the bonding were tetrahedral. If bond angles do indeed define hybrid orbitals, except in small rings, then Coulson's method ${ }^{12}$ leads to the result that the lone pair is 93% (12) C. A. Coulson, V. Henri Memorial Volume, Contribution à l'Étude de la Structure Molèculaire. Desoer, Liege (1948), p. 25.

Fig. 2.-The $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ molecule. Primed atoms are related to unprimed atoms by the mirror plane of the crystal. An error (which has been corrected here) was made in numbering a similar figure in reference 7 .

Fig. 3.-Projection of the unit cell along the y-axis. Glide and mirror planes have been excluded, but all other symmetry elements are present.
p , closer to the 100% for sp^{2} than to the 75% for sp^{3} bonds. Thus the hybridization is $\mathrm{sp}^{2.23}$ for bonds involving N. Ninety-six per cent of this p-character (89% of the lone pair) is perpendicular to the $\mathrm{N}-\mathrm{S}$ bond and in the NSN plane. Therefore, a substantial amount of conjugation of this lone pair witl the dorbitals of S is expected, and the observed $\mathrm{S}-\mathrm{N}$ bond distance of $1.623 \AA$. is substantially shorter than the $1.04 \AA$. (S) $+0.74 \AA$. (N) $-0.045 \AA$. (electronegativity correction) $=1.735 \AA$. . expected for a single bond. In the carbanions themselves, where $\mathrm{C} \alpha^{-}$replaces N , the relatively greater orbital size around $\mathrm{C}^{-}{ }^{-}$can be expected to increase the multiple bonding over that in the N analog.

Table II

Bond distances in angstroms		Bond angles in degrees ${ }^{b}$	
$\mathrm{~S}_{1} \mathrm{O}_{2}$	1.449	$\mathrm{O}_{2} \mathrm{~S}_{1} \mathrm{O}_{3}$	119.7
$\mathrm{~S}_{1} \mathrm{O}_{3}$	1.441	$\mathrm{~S}_{1} \mathrm{~N}_{4} \mathrm{C}_{6}$	119.7
$\mathrm{~S}_{1} \mathrm{~N}_{4}$	1.623	$\mathrm{~S}_{1} \mathrm{~N}_{4} \mathrm{C}_{5}$	117.9
$\mathrm{~N}_{4} \mathrm{C}_{5}$	1.480	$\mathrm{C}_{3} \mathrm{~N}_{4} \mathrm{C}_{6}$	112.9
$\mathrm{~N}_{4} \mathrm{C}_{6}$	1.471	$\mathrm{~N}_{4} \mathrm{~S}_{1} \mathrm{~N}_{4}$	112.6

"Standard deviations are 0.005 for bonds involving S and $0.007 \AA$. for CN bonds, but corrections which range from 0.009 to $0.029 \AA$. have been made for thermal motion. ${ }^{b}$ Standard deviations are 0.4° for all angles.

We close this section on purely geometrical and hybridization effects with a remark on steric aspects. In $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ the $\mathrm{C}_{6} \ldots \mathrm{C}_{6}^{\prime}$ and $\mathrm{C}_{5} \ldots \mathrm{C}_{5}^{\prime}$ distances are 3.4 and $3.5 \AA$., respectively, If one $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ group is rotated by 90° about the N-S bond, the closest non-bonded contacts are then $\mathrm{N}_{4} \ldots$

Table III

Atom	Final Position and Thermal ${ }^{a} .{ }^{b}$ Parameters								
	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{03}
S_{1}	0.000	0.015	0.126	4.3	1.9	2.9	0.0	0.0	0.1
O_{2}	. 000	-. 101	184	7.2	4.0	3.7	. 0	. 0	1.5
O_{3}	. 000	-. 120	072	8.4	3.0	4.2	0	0	-1.2
N_{4}	. 114	172	. 125	4.4	4.3	3.7	. 3	. 0	0.0
C_{5}	. 144	292	. 068	5.6	4.7	5.1	$-.6$	1.5	0.6
C_{6}	147	. 306	179	4.9	6.0	4.6	-1.3	0.3	1.2

"The therinal parameters are in the form:

$$
(\mathrm{x}!)-(4)^{-1}\left\{B_{11}\left(a^{*}\right)^{2} h^{2}+B_{22}\left(b^{*}\right)^{2} k^{2}+B_{23}\left(c^{*}\right)^{2} l^{2}+2 B_{12}\left(a^{*}\right)\left(b^{*}\right) h k+2 B_{13}\left(a^{*}\right)\left(c^{*}\right) h l+2 B_{23}\left(b^{*}\right)\left(c^{*}\right) k l\right]
$$

"Since no absorption corrections were nade, no interpretation of the thernal parameters will be attempted.
$C_{5}^{\prime}=3.0 \AA$. and $C_{5} \ldots C_{5}{ }^{\prime}=C_{5} \ldots C_{6}{ }^{\prime}=3.1 \AA$,, while if both $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ groups are rotated the $\mathrm{C}_{5} \ldots \mathrm{C}_{5}{ }^{\prime}$ distance is only 2.5 A . Most of the implied intramolecular strain can no doubt be relieved by a coöperativ? rotation in which the two $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ groups are continuously maintained approximately 90° out of phase, but some steric contributions to the barrier may remain, particularly if, in other examples, bulkier groups are attached to the N or to the $\mathrm{C} \alpha^{-}$of the analogous carbanion.

LCAO-MO Study of d-Orbital Interactions.-A more detailed examination of the valence structure of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ by the one-electron molecular orbital method was carried out with the simplification that the CH_{3} group was replaced by the isoelectronic F atom, and the effect of changing the nuclear charge was studied. The results, described below, clearly suggest that the $\mathrm{C}_{2 \mathrm{v}}$, type II, geometry as found in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ is more stable than the $\mathrm{C}_{\text {s }}$ geometry in which both NF_{2} groups of $\mathrm{F}_{2} \mathrm{NSO}_{2} \mathrm{NF}_{2}$ are rotated by 90° about the SN bond. In the more stable $\mathrm{C}_{2 \mathrm{v}}$ geometry the lone pair of N does not compete so strongly with the orbitals on O atoms for the d-orbitals of S, whereas this competition reduces the total conjugation in the unfavorable C_{s} geometry which is therefore less stable.

Table IV
Valles of $\mathrm{R}=\mathbf{\Sigma}\left|F_{0}\right|-\left|\mathrm{F}_{\mathrm{c}}\right||/ \boldsymbol{\Sigma}| \mathrm{F}_{0} \mid$ for Observed Reflections

Class	R	Range $\alpha \sin \theta$	R
$h k l$	$0.08 \bar{c}$	$0.000-0.190$	0.105
h even	0.087	$0.190-0.260$	0.066
k even	0.087	$0.260-0.300$	0.073
l even	0.087	$0.300-0.330$	0.057
$h+k$ even	0.079	$0.330-0.360$	0.079
$h+l$ even	0.072	$0.360-0.375$	0.082
$k+l$ even	0.072	$0.375-0.415$	0.087
$h+k+l$ even	0.087	$0.415-0.460$	0.110
$h k 0$	0.123	$0.460-0.490$	0.102
$h 0 l$	0.076	$0.490-0.550$	0.142
$0 k l$	0.088		

All nine valence orbitals of the $3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d type are included for S, and four orbitals of the 2s and 2p type are included for each remaining atom of $\mathrm{F}_{2} \mathrm{NSO}_{2} \mathrm{NF}_{2}$. All possible overlap integrals are included. The bond angles and distances, averaged where equivalent in the isolated molecule, found in the X-ray study were used. Three molecular conformations were treated: (a) the geometry found in the X-ray study averaged to $\mathrm{C}_{2 \mathrm{v}}$, (b) a structure designated as $\mathrm{C}_{2 \mathrm{v}}{ }^{\prime}$ obtained by rotating both NF_{2} groups by 180° about the $\mathrm{S}-\mathrm{N}$ bond, and (c) a structure designated as C_{s} obtained by rotating both NF_{2} groups by 90° about the $\mathrm{S}-\mathrm{N}$ bond. Each conformation was studied both with and without the inclusion of the 3d-orbitals of S. As expected, we shall see that the replacement of CH_{3} by F reduces the electron density in the region of interest,
and hence the $\mathrm{N}-\mathrm{S}$ orbital interactions are underestimated relative to those in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$.

The problem was formulated as a program for the IBM 7090. Real Slater orbitals were used, with p_{x} along x, etc., in a right-handed coordinate system (Fig. 2). The elements of the complete overlap matrix S are expressed as products of geometric factors computed from the atomic coordinates and the overlap integrals. The geometrical factors for interactions involving d-orbitals are obtained by coördinate transformations of the appropriate tesseral harmonics, and a method described elsewhere ${ }^{13}$ is used for the remaining interactions. As an example, the $\mathrm{d}_{z}{ }^{2}$ and $\mathrm{d}_{x y}$ orbitals are represented as matrices

$$
\left(\begin{array}{rrr}
-\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
0 & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

which are transformed to a coordinate system oriented toward the atom under consideration, and then the coefficients of σ-type interactions are obtained from the 3,3 elements of the transposed arrays, while those of the π-type interactions are related to the 1,3 and 2,3 elements. The elements of the "effective Hamiltonian" matrix H are then related to S by ${ }^{14}$

$$
H_{i j}=K\left(H_{i:} H_{i j}\right)^{1 / 2} S_{i j}, \quad i \neq j
$$

where H_{ii} is the negative of the valence state ionization potential (VSIP) of an electron in the i th atomic orbital, and K is a dimensionless constant usually set equal to -2 . The VSIP listed as Coulomb integrals with Slater exponents in Table VI were taken from tables ${ }^{15}$ and from atomic energy levels, ${ }^{16}$ with corrections estimated for assumed charges of -0.50 on F, and +0.25 on $\mathrm{N},-0.25$ on O and +2.00 on S . The eigenvalues and eigenvectors are obtained by solution of the equation $\operatorname{det}(\mathbf{H}-\lambda \mathbf{S})=0$, in which each matrix is $41 \times$ 41 in size.

The results, summarized in Tables VII-XIII, require the definitions
i, k represent atomic orbitals
l, m represent atoms
j represents a molecular orbital (MO)
n_{j} is the occupation number of the j th MO
E_{j} is the energy of the j th MO, and
$C_{i j}$ is the coefficient of the i th AO in the j th MO
The total orbital energy (Table VII) is then

$$
E=\sum_{\mathrm{j}} n_{\mathrm{j}} E_{\mathrm{j}}
$$

and the orbital and overlap population matrix elements

[^2]Table V
Values of 10 F Obsd. for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$

(Tables VIII and IX) are

$$
\begin{gathered}
O P_{\mathrm{i} \mathrm{i}}=\sum_{\mathrm{j}} n_{\mathrm{i}} C_{\mathrm{ij}}{ }^{2} \text {, and } \\
O P_{\mathrm{ik}}=2 \sum_{\mathrm{j}} n_{\mathrm{j}} C_{\mathrm{i} j} C_{\mathrm{kj}} S_{\mathrm{ik}}, i \neq k
\end{gathered}
$$

The atomic and bond charge matrix ${ }^{17}$ (Tables X and XI) is defined by

$$
Q_{l m}=\sum_{\substack{i \\ k \text { on } l \\ k \text { on } m}} O P_{\mathrm{ik}}
$$

In Table XII we give a partial tabulation of the fraction F_{ij} of each atomic orbital in each molecular orbital, ${ }^{18}$ according to the relation

$$
F_{i j}=C_{i j} \sum_{\mathbf{k}} S_{i \mathbf{k}} C_{i j}
$$

and in Table XIII we list those elements of the overlap matrix involving the d-orbitals of S for reference in the discussion below.

Discussion.--The differences in total orbital energies (Table VII) give the observed conformation ($\mathrm{C}_{2 v}$) a stability of 9.54 kcal ./mole relative to the C_{s} conformation. Moreover this stability arises almost completely from the d-orbital interactions. On the other
(17) R. McWeeny, J. Chem. Phys., 19, 1614 (1951).
(18) R.S. Mulliken, ibid., 23,1833 (1955).
$\ell=12(\mathrm{~h}, \mathrm{k}):(0-10,0) 477,511,175, a, 349,337$; $(1,1)$
61; (0-12,2) 453,406,485,451,202,92,139; (1-3,3)
33,71; (0-10,4) 397,434,436,280,222,148; (1-7,5)
61,a,a,14; (0-2,6) 236,232.
$\ell=13(h, k):(1-11,1) 456,209,206,257,191,98 ;$
(0-8,2) 359,123,80,83,128; (1-11,3) 185,399,326,
133,80,101; (2-10,4) $109,188,58, a, 27$; (1-7,5)
202,111,87,112; (0,6) 82.
$\ell=14(\mathrm{~h}, \mathrm{k}):(1-13,1) 329,160,225,107,152, \mathrm{a}, 29$;
(3-11,3) $105,80, a, a, 27 ;(0,4) 31$; $(1-7,5) 58$,
99,117,61; (1-3,7) 138,99.
$\ell=15(\mathrm{~h}, \mathrm{k}):(1-11,1) 521,410,322,298,217,127$;
(0-6,2) $45, a, 73,50 ;(1-11,3) 190,259,253,143$,
85,63; (4-6,4) 43,44; (1-7,5) 126,119, 86,59,
$(2,6) 90$; $(1-3,7) 113,68$.
$\ell=16(\mathrm{~h}, \mathrm{k}):(0-10,0) 1273,612,223,455,456,188 ;(1,1)$
69; (0-10,2) 191,462,505,234,112,161; (0-8,4) 186,
159,156,192,113; (1,5) 27; (0-2,6) 157,122.
$\quad \bar{\ell}=17(\mathrm{~h}, \mathrm{k}):(1-11,1) 349,347,237,173,158,93$;
(0-6,2) $96,79,111,104 ;(1-7,3) 156,101,157,145$;
(0-6,4 $38, a, a, 81 ;(1-5,5) 59,101,38 ;(2,6) 150$;
$(1,7) 80$.
$\lambda=18(\mathrm{~h}, \mathrm{k}):(0-4,0) 136,135,136$; ($1-11,1$) 184 ,
$369,214,133, a, 62 ;(0-2,2) 80,70 ;(1-7,3) 108$,
63,a,61; (1-5,5) 78,128,94; (1-3,7) 163,85.
$\ell=19(\mathrm{~h}, \mathrm{k}):(1-9,1) 407,370,270,209,188 ;(0-6,2)$
72,a,a,80; (1-7,3) 125,126,176,142; (0-6,4) 73,
а, a,90; (1-3,5) 73,101; (2,6) 96; (1-3,7) 98,
66.
$\ell=20(\mathrm{~h}, \mathrm{k}):(0-10,0) 715,416,139,326,295,126$;
(0-8,2) 122, 285, 296,124,95; (0-6,4) 107,135,'
147,113; (0-2,6) 182,144.
$\ell=21(\mathrm{~h}, \mathrm{k}):(1-9,1) 201,180,121,110,100 ;(1-7,3)$
$74,86,130,72 ;(0-6,4) 65,45,83,58$; $(1-3,5) 80$,
88; (2,6) 100 ; $(3,7) 65$.
$\ell=22(\mathrm{~h}, \mathrm{k}):(1-5,1) 95,90,48 ;(0,2) 54 ;(1-7,3)$
71,61,43,40; (3,5 141.
$\ell=23(\mathrm{~h}, \mathrm{k}):(1-7,1) 200,154,105,111 ;(0,2) 96$;
$\left(\frac{1}{3}-5,3\right) 104,160,146 ;(2,4) 45 ;(1-3,5) 136,104$;
$(3,7) 65$.
$==24(h, k):(0-4,0) 211,207,123 ;(0-6,2) 171$,
179,130,115; (0-2,4) 98,205; (2,6) 141.
$\ell=25(\mathrm{~h}, \mathrm{k}):(1-3,1) 120,53 ;(0-2,2) 131,92 ;$
(1-3,3) 33,127; (1-3,5) 121,68.
$\ell=26(h, k):(1-3,1) 50,100 ;(1,3) 103 ;(3,5) 67$.
$\ell=27(h, k):(1-3,1) 113,69 ;(0,2) 108 ;(1-3,3)$
85,178; (1-3,5) 137,78.
$\ell=28(\mathrm{~h}, \mathrm{k}):(0-2,0) 99,129 ;(0-2,2) 146,114$;
$\hat{\ell}=29(\mathrm{n}, \mathrm{k}):\binom{2,6}{1,1} 91 ;(0,2) 96 ;(3,3) 113$.
liand, the relatively smaller difference of 3.59 kcal ./ mole between the $\mathrm{C}_{2 \mathrm{v}}$ and $\mathrm{C}_{2 \mathrm{v}}{ }^{\prime}$ conformations appears to be independent of the d-orbital interactions. Owing to the semi-empirical nature of the method, these

Table VI

	Slater exponents		Coulomb integrals, e.v.		
	(s, p)	d	s		d
Fluorine	2.600	-	-37.24	-19.86	-
Oxygen	2.275	-	-35.57	-18.03	-
Nitrogen	1.950	-	-27.42	-14.92	-
Sulfur	2.050	2.050	-24.08	-17.32	-7.0

Table VII
Total Orbital Energies

	With sulfur d	Without sulfur d
$\mathrm{C}_{2 \mathrm{v}}$	-1350.606 e.v.	-1347.470 e.v.
$\mathrm{C}_{2 \mathrm{v}}{ }^{\prime}$	-1350.450 e.v.	-1347.318 e.v.
C_{8}	-1350.191 e.v.	-1347.311 e.v.
$\mathrm{Cowr}^{\prime}-\mathrm{C}_{4 v}$	0.156 e.v. $=$	$0.152 \mathrm{ecr}=$
	$3.59 \mathrm{kcal} . / \mathrm{mole}$	3.50 kcal . $/ \mathrm{mole}$
$\mathrm{C}_{5}-\mathrm{C}_{\text {g }}$	0.415 e.v. $=$	0.159 e.v. $=$
	$9.54 \mathrm{kcal} / \mathrm{m}$	3.66

exact numbers are not of significance, but the essential nature of the barrier becomes clear in the following analysis. The sum of the energies of the two highest occupied molecular orbitals is less for the $\mathrm{C}_{2 \mathrm{v}}$ conformation than for the C_{s} conformation by 12.76 kcal ./

Table VIII

			ith sulfur			hout sulf	
		$\mathrm{C}_{2 \mathrm{~V}}$	C_{8}	$\mathrm{C}_{2 \mathrm{v}}{ }^{\prime}$	$\mathrm{C}_{2 \mathrm{v}}$	C_{5}	$\mathrm{C}_{2 \mathrm{y}}{ }^{\prime}$
	s	1.009	1.001	1.002	1.018	1.004	1.008
	x	1.198	0.448	0.507	1.307	0.466	0.532
N	y	0.910	0.331	1.601	0.985	0.388	1.776
	z	0.247	1.598	0.246	0.246	1.732	0.246
	s	1.638	1.641	1.639	1.600	1.604	1.601
$\mathrm{O}^{\text {I }}$	x	1.808	1.828	1.825	1.959	1.961	1.962
	y	1.679	1.730	1.677	1.816	1.834	1.816
	z	1.497	1.483	1.496	1.520	1.517	1.519
	s	1.638	1.641	1.639	1.600	1.604	1.601
Oil	x	1.808	1.810	1.825	1.959	1.960	1.962
	y	1.679	1.717	1.677	1.816	1.831	1.816
	z	1.497	1.485	1.496	1.520	1.519	1.519
	s	0.537	0.537	0.538	0.535	0.535	0.536
	x	0.547	0.566	0.591	0.561	0.573	0.586
	y	0.550	0.518	0.498	0.528	0.514	0.495
		0.359	0.370	0.360	0.347	0.349	0.347
S	$x^{2}-y^{2}$	0.061	0.051	0.065	0		0
		0.071	0.005	0.074	0	0	0
	$x y$	0.063	0.043	0.061	0	0	0
	$x z$	0.024	0.046	0.023	0	0	0
	$y z$	0.028	0.076	0.028	0	0	0
	s	1.867	1.867	1.867	1.867	1.867	1.866
F^{1}	x	1.966	1.550	1.817	1.967	1.549	1.818
	y	1.856	1.860	2.004	1.859	1.861	2.008
	,	1.566	1.961	1.555	1.556	1.965	1.554
	s	1.867	1.867	1.867	1.867	1.867	1.866
F^{111}	x	1.966	1.978	1.817	1.967	1.979	1.818
	y	1.856	1.443	2.004	1.859	1.439	2.008
	z	566	1961	1.555	1. 556		1.554

${ }^{a}$ In the rotated C_{s} conformation, O^{1} is the oxygen atom closer to the equivalent F^{1} and $\mathrm{F}^{1 I}$ closest to S , while $\mathrm{F}^{I I}$ and $\mathrm{F}^{1 V}$ are further away
respectively (Table VIII). In the $\mathrm{C}_{2 \mathrm{v}}$ conformation the p_{x} and p_{y} orbitals of N , primarily lone pair orbitals, interact with $\mathrm{d}_{x y}$ and $\mathrm{d}_{x^{2}-y^{2}}$, respectively, while in the C_{s} conformation (nuclear coördinates changed but basis functions remain along x, y, z of Fig. 2) the p_{z} orbital of N , now primarily a lone pair orbital, interacts with $\mathrm{d}_{x z}$ and $\mathrm{d}_{y z}$ of S .

Our essential conclusion is that in the C_{s} conformation the lone pair of N has to compete more with the lone pairs of O atoms for d-orbital stabilization than in the $\mathrm{C}_{2 v}$ conformation. The overlap integrals of Table XIII further support this conclusion, since overlaps with $\mathrm{d}_{x z}$ and $\mathrm{d}_{y z}$ are greatest for oxygen porbitals, but overlaps with $\mathrm{d}_{x^{2}-y^{2}}$ and $\mathrm{d}_{x y}$ are greater for N with a strong preference for p_{x} and p_{y} thus favoring the $\mathrm{C}_{2 \mathrm{v}}$ conformation. It may be noted that the competition of O - and N -orbitals for particular d orbitals of S was not included in our earlier discussion ${ }^{7}$ in which the source of the barrier was not found. In terms of the representation of the $\mathrm{C}_{2 \mathrm{v}}$ group with the y-axis along the molecular twofold axis, the d-orbitals and their symmetries are $\mathrm{d}_{z^{2}}$ and $\mathrm{d}_{x^{2}-y^{2}}$ of symmetry $\mathrm{a}_{1}, \mathrm{~d}_{x y}$ of symmetry $\mathrm{b}_{1}, \mathrm{~d}_{x z}$ of symmetry a_{2} and $\mathrm{d}_{y z}$ of symmetry b_{2}. Thus the case II conjugation ${ }^{6}$ of symmetries a_{1} and b_{1} is greater in $\mathrm{F}_{2} \mathrm{NSO}_{2} \mathrm{NF}_{2}$ than the case I conjugation of symmetries a_{2} and b_{2}, because the latter involves greater competition for the sulfur d-orbitals by the lone pairs of the oxygen atoms.

One set of calculations was made to test the influence of nuclear charge of the F atom on the barrier The F atoms are essentially replaced by C atoms having a Slater exponent of 1.625 , and VSIP's of 21.0 e.v. for 2 s and 11.27 for 2 p orbitals. ${ }^{15}$ The energy difference between $\mathrm{C}_{2 \mathrm{v}}$ and C_{s} conformations is 24.17 kcal ./ mole in the same direction as found above. The sums of

Table IX
Nitrogen-Sulfur Overlap Populations: Calculations Using Sulfur d-Orbitals

	${ }^{\mathrm{N}}$	x_{N}	y_{N}	z_{N}	5^{N}	${ }^{\text {N }}$	$y \mathrm{~K}$	$z_{\text {N }}$	5 N	x_{N}	y_{N}	z_{N}
$s_{\text {s }}$	0.104	0.062	0.022	0.000	0.102	0.062	0.026	0.000	0.104	0.056	0.032	0.000
x_{s}	. 166	. 074	. 076	. 000	. 160	. 084	. 076	. 000	. 150	. 066	. 114	000
y_{s}	. 066	. 118	. 000	. 000	. 078	. 084	. 000	. 000	. 086	088	. 000	. 000
z_{8}	. 000	. 000	. 000	. 006	. 000	. 000	. 000	036	. 000	. 000	. 000	. 006
z^{2} s	. 012	-. 006	. 010	000	. 004	. 006	. 002	. 000	. 002	. 002	014	. 000
$x^{2}-y^{2}$. 008	. 012	. 062	. 000	$-.002$. 000	-. 004	. 000	$-.006$. 004	090	000
$x y_{5}$	$-.004$	056	$-.004$. 000	. 006	. 012	. 002	000	. 018	034	$-.008$	000
$x z_{\text {s }}$. 000	000	. 000	. 000	. 000	000	. 000	048	. 000	. 000	. 000	-. 002
$y z_{\mathrm{s}}$. 000	000	. 000	. 000	. 000	. 000	. 000	044	. 000	. 000	.000	002

Table X

Atomic Population						
	s	N	O^{1}	O^{11}	F^{1}	$\mathrm{F}^{\text {III }}$
With sulfur d						
$\mathrm{C}_{2 v}$	2.240	3.363	6.623	6.623	7.245	7.245
C_{8}	2.212	3.378	6.682	6.652	7.237	7.250
$\mathrm{Cow}^{\text {y }}$	2.237	3.356	6.637	6.637	7.243	7.243
Without sulfur d						
$\mathrm{C}_{2 \mathrm{y}}$	1.971	3. 555	6.896	6.896	7.248	7.248
Cs	1.971	3.540	6.917	6.914	7.243	7.251
$\mathrm{C}_{2 v}{ }^{\prime}$	1.963	3.562	6.898	6.898	7.246	7.246

nole; i.e., about $4 / 3$ of the total of 9.54 kcal ./mole. Both of these molecular orbitals consist of about 40% of p-orbitals of N , as measured by the F_{ij}, and the signs of the coefficients indicate that these orbitals roughly approximate to "lone pair" orbitals. Also there is about 3.5% less d-character in the two C_{s} MO's than in the two $\mathrm{C}_{2 \mathrm{v}}$ MO's, and this loss occurs primarily from the $\mathrm{d}_{x^{2}-y^{2}}$ orbital. This same conclusion is also indicated by the $d_{x^{2}-y^{2}}$ overlap populations of 0.071 and $0.0(0)$ for the $C_{2 v}$ and C_{s} conformations,
orbital population of d-orbitals of S are $0.65 \overline{7}$ for the $\mathrm{C}_{2 \mathrm{v}}$ conformation and 0.573 for the C_{s} conformation, and the $\mathrm{d}_{x^{2}-y^{2}}$ population is 0.238 . Thus the total d-occupancy in $\mathrm{C}_{2} \mathrm{NSO}_{2} \mathrm{NC}_{2}$ is greater than the values of 0.247 for $\mathrm{C}_{2 \mathrm{v}}$ and 0.221 for C_{s} in $\mathrm{F}_{2} \mathrm{NSO}_{2} \mathrm{NF}_{2}$ by about 2.6 , which is about the same ratio found for the barriers. Thus no qualitative difficulties arise when $\mathrm{F}_{2} \mathrm{NSO}_{2} \mathrm{NF}_{2}$ is used as a model for the isoelectronic $\left(\mathrm{CH}_{3}\right) \mathrm{NSO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{5}$

Table XII
Partial Composition of Two Highest Occupied Molecular Orbitals in Terms of F_{ij} (EQ. 7)

i	(b_{1})	(a_{1})	(${ }^{\prime \prime}$)	(a^{\prime})
	$j=14$	$j=15$	」 $=14$	$j=15$
$\mathrm{d}_{2}{ }^{2}$	0.000	0.000	0.000	0.000
$\mathrm{d}^{2}{ }^{2}-\nu^{2}$	0.000	0.080	0.000	0.001
$\mathrm{d}_{x y}$	0.029	0.000	0.000	0.000
$\mathrm{d}_{x z}$	0.000	0.000	0.026	0.000
d_{y} :	0.000	0.000	0.000	0.048

Table XIII
Elements of the Overlap Matrix Involving the Sulfur d-Orbitals ${ }^{a}$

	d:	$d_{z z}-y^{\prime \prime}$	d_{2}	$\mathrm{d}_{\text {a }}$	${ }^{1} 1_{y z}$
Nitrogen					
s	-0.1368	0.0909	0.2187	0	0
$\mathrm{p} x$	0.0945	0.0402	-0.1939	0	0
py	0.0630	-0.1962	-0.0367	0	0
pz	0	0	0	0.1671	0.1116
Oxygen					
s	0.2052	-0.0721	0	0	-0.2484
$\mathrm{p} x$	0	0	-0.1168	0.2012	0
py	0.2221	0.0625	0	0	0.0140
pz	-0.0340	0.0936	0	0	0.2053

a These values apply to all three conformations, but the designation of orbitals for the lone pair of Nill vary according to the model.

We have neglected the atomic cores in this analysis. These core repulsions have effectively been included in the calculation by the choice of Coulomb integrals and by the proportionality of resonance integrals
$\left(H_{i j}\right)$ to overlap, and hence are largely cancelled by electron-nuclear attractions. The resulting bonding energy is, in fact, too large by about a factor of two because the electron-electron repulsion energies are not completely cancelled. Similar results have been described elsewhere, ${ }^{19}$ and provide a basis for an extensive and successful application of LCAO-MO methods to conformations and bonding in organic systems. The magnitude of the core repulsions, neglected here for the above reasons, is so great that the core interaction for the $\mathrm{C}_{2 v}$ case is $7938 \mathrm{e} . \mathrm{v}$., about six times greater than the total orbital energy, and hence leads to no bonding at all! This question has also been discussed by Ruedenberg, ${ }^{20}$ who also justifies the neglect of core repulsions in a somewhat different, but related, analysis of the various energy contributions to the stabilities of molecules.

Finally, partial support of these conclusions comes from recent experiments ${ }^{10}$ which eliminate the possibility of a barrier to inversion of a pyramidal configuration about $\mathrm{C} \alpha^{-}$as a cause of retention of configuration in carbanions of this type.

Acknowledgments.-We acknowledge suggestion of this problem by Professor E. J. Corey with whom we have enjoyed many discussions. This research was supported by the National Institutes of Health, the Air Force Office of Scientific Research, and by award of a Fellowship to T. J. by the Socony Mobil Company. We also thank Mr. R. M. Stevens for use of molecular integral programs, and the Computation Centers at Harvard and M.I.T. for use of facilities.
(19) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 37, 2872 (1962).
(20) K. Ruedenberg, ibid., 34, 1861 (1961).
[Contribution from the Department of Chemistry, University of Southern California, Los Angeles 7, Calif.; Organic Chemistry Laboratory, Swiss Federal Institute of Technology, Zurich, Switz.; Department of Chemistry, University of California at Los Angeles, Los Angeles, Calif; and the Chemical Crystallography Laboratory, University of Oxford, Eng.]

The Crystal Structure of Aureomycin (Chlortetracycline) Hydrochloride. Configuration, Bond Distances and Conformation

By Jerry Donohue, J. D. Dunitz, K. N. Trueblood and Monica S. Webster
Received September 13, 1962

Abstract

The crystal structure of aureomycin hydrochloride has been refined with X-ray data used in a previous study and also with independent, more extensive data. The stereochemistry 1 was confirmed, and the bond distances are now in much better accord with the chemical structure. The conformation about $\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a})$ is eclipsed, contrary to expectation, and is expected to remain so in this compound and in other tetracyclines. A reinterpretation of the chemistry involving this bond is indicated. In the β-tricarbonylmethane system at $\mathrm{C}(2)$ the hydrogen atom appears to be localized on the oxygen atom of the amide group. The hydrogen bond system is satisfactory, all eight of the possible hydrogen atoms of the cation entering into hydrogen bonds, four of which are intramolecular. The configuration at $\mathrm{C}(5)$ in the related compound terramycin is indicated to be $\mathrm{OH}(5)$ cis to $\mathrm{OH}(6)$.

Introduction

A determination of the crystal structure of aureomycin ${ }^{1}$ hydrochloride, based on three dimensional X-ray data, has been reported by Hirokawa, Okaya, Lovell and Pepinsky. ${ }^{2 a, b}$ This work confirmed the constitution that had been derived on chemical grounds for aureomycin ${ }^{3}$ and at the same time established the relative configurations of the five asymmetric carbon atoms in the molecule as shown in 1.

[^3]

Some of the conclusions drawn by these authors appear, however, to conflict with 1 . For example, it was stated that: "(a) ring D takes a partially quinone structure; (b) $C(11)$ and $O(11)$ are single bonded; (c) no double bond is localized between $\mathrm{C}(11 \mathrm{a}$) and C(12)." These conclusions, which were drawn largely on the basis of the observed bond lengths, do not seem justifiable in view of the rather large standard errors of

[^0]: i1) D. J. Cram, W, D. Nielson and B. Rickborn, J. Am. Chem, Soc., 82, (941.5 (1960)
 (2) E. J. Corey and E. T. Kaiser, ibia., 83, 490 (1961).
 (3) J. J. Cram, D. A. Scott and W. D. Nielson, ibid., 83, 3696 (1961).
 (4) D. J. Cram, R. D. Partos, S. H. Pine and H. Jäger, ibid., 84, 1742 19(92).
 (i.) H. L. Goering, D. L. Townes and B. Dittmer, J. Org. Khem., 27, 735; (1) (1;2).
 (i) H. F. Kuch and W. F. Moftitt, Trars. Faralay Soc., 47, 7 (1951).
 (7) 'I. Jordan, W. Smith and W. N, Lipscomb, Tetrahedron Letters, 2, $: 37$ (1962).
 (8) K. N. Trueblood and S. W. Mayer, Acta Cryst., 9, 628 (1956).
 (9) H. F. Zimmerman and B. S. Thyagarjan, J. Am. Chem. Soc., 82, 2505 (19600).
 (I0) E. J. CCorey. H. König and I. H. Lowry, Tetrahedron Letters, 12, 515 (1092,

[^1]: (11) R. A. Jacubson, J. A. Wunderlich and W. Ň. Lipscomb, Acta Cryst. 14, 598 (1961).

[^2]: (13) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 36, 2179 (1962).
 (14) C. J. Ballhausen and H. B. Gray, Inorg. Chem., 1, 111 (1962).
 (15) J. Hinze and H. H. Jaffé, J. Am. Chem, Soc., 84, 540 (1962).
 (16) C. E. Moore, "Atomic Energy Levels,' Natl. Bureau of Standards, Circular No. 467, Vol. 1.

[^3]: (1) Aureomycin is the registered trade name of the American Cyanamid Co, for the compound having generic name $\mathbf{7}$-chlortetracycline. A related antibiotic is Terramycin, which is the registered trade name of Chas. Pfizer and Co. for 5 -hydroxytetracycline.
 (2) (a) S. Hirokawa, Y. Okaya, F. M. Lovell and R. Pepinsky, Acla Cryst., 12, 811 (1959) ; (b) Z. Krist., 112, 439 (1959).
 (3) C. R. Stephens, L. H. Conover, R. Pasternack, F. A. Hochstein, W. T. Moreland, P. P. Regna, F. J. Pilgrim, K. J. Brunings and R. B. Woodward, J. Am. Chem. Soc., 76, 3568 (1954).

